Aerodynamic Performance Enhancement of a NACA 66-206 Airfoil Using Supersonic Channel Airfoil Design

نویسندگان

  • David M. Giles
  • David D. Marshall
چکیده

Supersonic channel airfoil design techniques have been shown to significantly reduce drag in high-speed flows over diamond shaped airfoils by Ruffin and colleagues. The effect of applying these techniques to a NACA 66-206 airfoil is presented. The design domain entails channel heights of 8-16.6% thickness-to-chord and speeds from Mach 1.5-3.0. Numerical simulations show an increase in the lift-to-drag ratio for airfoils at Mach 2.5 at a 35,000-ft altitude with a 12% channel height geometry showing a benefit of 17.2% at 6-deg angle of attack and a sharp channel leading edge. Wave drag is significantly reduced while viscous forces are slightly increased because of greater wetted area. Lift forces compared to clean airfoil solutions were also decreased, due mainly to the reduction in the length of the lifting surfaces. A tensile yield failure structural analysis of a typical beam found an 11.4% channel height could be implemented over 50% of the span between two typical ribs. A three dimensional wing was designed with the determined slot geometry and two dimensional flow analyses. An overall increase in L/D of 9% was realized at Mach 2.5 at a 35,000-ft altitude and 6-deg angle of attack.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verification of a CFD solver in near ground effect for aerodynamic behavior of airfoil NACA 0015

Numerical investigation was performed on NACA 0015 which is a symmetric airfoil. Pressure distribution and then lift and drag forces are verified. Changing of ground clearance was a considerable point. Also the angle of attack was changed from 0° to 10°. Pressure coefficient reaches its higher amounts on the wing lower surface when the ground clearance diminishes. Increment of the angle of atta...

متن کامل

Effect of blade profile on the performance characteristics of axial compressor in design condition

The choice of geometrical shape of the blades has a considerable effect on aerodynamic performance and flow characteristics in axial compressors. In this paper, the effects of the blades shape on the aerodynamic design characteristics are investigated based on Streamline Curvature Method (SCM). Initially, the Streamline Curvature Method (SCM) is used for designing a two-stage axial compressor. ...

متن کامل

Performance improvement of a wind turbine blade using a developed inverse design method

The purpose of this study is to improve the aerodynamic performance of wind turbine blades, using the Ball-Spine inverse design method. The inverse design goal is to calculate a geometry corresponds to a given pressure distribution on its boundaries. By calculating the difference between the current and target pressure distributions, geometric boundaries are modified so that the pressure di...

متن کامل

Aerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy

The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...

متن کامل

Aerodynamic Characteristics of Asymmetric Airfoils Blade Small Vertical Axis Wind Turbines

In this paper, using sliding mesh model, the numerical simulation of small vertical axis wind turbine aerodynamic performance was studied with FLUENT software. Got change rule of four same thickness and different camber‘s NACA series asymmetrical airfoil moment coefficient of the wind turbine and wind power machine with the tip speed ratio. Wind turbine benchmark blade around the flow field was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008